Back | Next

Survival with Style

Suddenly we're all going to die. Look around you: a spate of works, such as THE DOOMSDAY BOOK, EGO-DOOM, and the like; and organizations such as "Friends of the Earth," and "Concerned Citizens" for one cause or another. All have the same message: Western civilization has been on an energy and resources spree, and it is time to call a halt.

The arguments are largely based on a book called THE LIMITS TO GROWTH. Written by a management expert for a group of industrialists calling themselves The Club of Rome, LIMITS TO GROWTH may be the most influential book of this century. Its conclusions are based on a complex computer model of the world-system. The variables in the model are population, food production, industrialization, pollution, and consumption of non-renewable resources. The results of the study are grim and unambiguous: unless we adopt a strategy of Zero-Growth and adopt it now, we are doomed. Western Civilization must learn to make do, or do without; unlimited growth is a delusion that can only lead to disaster; indeed, any future growth is another step toward doom.

Doom takes any of several forms, each less attractive than the others. In each case population rises sharply, then falls even more sharply in a massive human die-off. "Quality of Life" falls hideously. Pollution rises exponentially. All this is shown in Figure 1, which is taken from one of the computer runs.

According to Meadows and many others, Earth is a closed system, and we cannot continue to rape her as we have in the past. If we do not learn restraint, we are finished.

Nor can technology save us. Perhaps the worst tendency of the modern era is our reliance on technologic "fixes," the insane delusion that what technology got us into, it can take us out of No; according to the eco-disaster view technology not only will not save us, but will hasten our doom. We have no real alternative but Zero-Growth. As one ZG advocate recently said, "We continue to hold out infinite human expectations in a finite world of finite resources. We continue to act as if what Daniel Bell calls 'the revolution of rising expectations' can be met when we all know they cannot."

Jay Forrester, whose MIT computer model was the main inspiration for the zero-growth movement, goes much further. Birth control, he strongly implies, cannot alone do the job. It is a clear deduction from Forrester's model that only drastic reductions in health services, food supply, and industrialization can save the world-system from disaster.



Figure 1


The "standard" model of World Three. The projection assumes no major changes in the physical, economic, or social relationships (as modeled in World Three). Population growth is finally halted "by a rise in death rate due to decreased food and medical services." "THE LIMITS TO GROWTH"


Figure 2


It is important to recognize the severe consequences of a policy of Zero-Growth. For Western civilization ZG means increasing unemployment and a falling standard of living; worse than inconvenient, but not quite a total catastrophe. For the rest of the world things are not so simple. Behind all the numbers and computer programs there is a stark reality: millions in the developing countries shall remain in grinding poverty—forever.

They may be unwilling to accept this. There is then the decision to be made—must they be forced to accept? The advocates of Zero-Growth also advise, on both practical and moral grounds, the massive sharing of Western riches with the developing world. Indeed, under the ZG strategy, the West has only two choices: massive sharing with the developing world, or to retain wealth while most of the world remains at the end of the abyss. Neither alternative is attractive, but there is nothing for it: failure to adopt Zero-Growth is no more than selfishness, robbing our children and grandchildren for our own limited and temporary pleasures.

So say the computers.

* * *

I don't accept that. I want Western civilization to survive; not only survive, but survive with style.

I want to keep the good things of our high-energy technological civilization: penicillin, stereo, rapid travel, easy communications, varied diet, plastic models, aspirin, freedom from toothache, science fiction magazines, libraries, cheap paperback books, Selectric typewriters, pocket computers, fresh vegetables in mid-winter, lightweight backpacks and sleeping bags—the myriad products that make our lives so much more varied than our grandfathers'.

Moreover, I want to feel right about it. I do not call it survival with style if we must remain no more than an island of wealth in the midst of a vast sea of eternal poverty and misery. Style, to me, means that everyone on Earth shall have hope of access to most of the benefits of technology and industry—if not for themselves, then certainly for their children.

This is a tall order. Economists say it cannot be done. My wishes are admirable but irrelevant. The universe cares very little what we want; there are inherent limits, and the models of the world-system prove that what I want cannot be brought about.

That, however, is not so thoroughly proved as all that. Computers and computer models are very impressive, but a computer can give you no more information than you have put into it. It may be that Forrester and the other eco-doomsters have modeled the wrong system. At least it is worth taking a look; surely it is against man's very nature simply to roll over and die without a struggle.

Arthur Clarke once said that when a greybearded scientist tells you something is possible, believe him; but when he says it's impossible, he's very likely wrong. That has certainly been true in the past. Surely we are justified in examining the assumptions of those models which tell us we are doomed, and which dictate a policy of Zero-Growth.

* * *

The economists' models warn of four dooms: inadequate food supply; increasing pollution; depletion of non-renewable resources; and over-crowding through uncontrolled rise in population. Let us examine each in turn.

The first, food production, is surprisingly less critical than is generally supposed. This is hardly to deny that there is hunger and starvation in the world. However, given sufficient energy resources, food production is relatively simple. The UN's Food and Agricultural Organization reports that there are very few countries that do not, over a ten-year average period, raise enough food to give their populations more than enough to eat.

There are two catches to this. First, even in the West, birds, rodents, and fungi eat more of man's crops than ever does man. True we harvest more than most nations; but to do so requires high technology.

The second catch is the "over a ten year period" part. The average crop production is sufficient, but drought, flood, and other natural disasters can produce famine through crop failures over a one, two, or three year period. In much of the world there is no technology for storing surpluses. The West has known for a long time about the seven fat years followed by seven lean years, but it took us centuries to come up with reliable ways to meet the problem of famine.

Our solutions have been three-fold: increased production; better food storage, including protection from vermin; and weaving the entire West into a single area through efficient transportation. Drought-stricken farmers in Kansas can be fed wheat from Washington state, beef from the Argentine, and lettuce from California.

All this takes industrial technology on a large scale. Western farming methods use fertilizers. The transportation system is clearly a high-energy enterprise. Even providing Mylar linings for traditional dung-smeared grain storage pits (animal dung is often the only waterproofing material available) requires high-energy technology.

And in the West we waste land because we have land to waste; our agricultural technology produces surpluses.

A hard-working person needs about 7000 large Calories, or 7 million gram-calories, per day. The sun delivers nearly 2 gram-calories per square centimeter per minute; assume about 10% of that gets through the atmosphere, and that the sun shines about five hours (300 minutes) per day on the average. Further assume that our crops are about 1% efficient in converting sunlight to edible energy. Simple multiplication shows that a patch 35 meters on a side will feed a man—about a quarter of an acre.

Granted, that's an unfair calculation; but it isn't that far off from reality. My greenhouse, 2.5 meters on a side, can produce enormous quantities in hydroponics tanks, and there's no energy wasted in transportation and distribution of the food. I do use electricity to run the pumps, but that could be done, if necessary, by hand labor.

In Japan and in some of the oil-rich sheikdoms, hydroponics farming has been carried to fantastic lengths; acres of covered territory, with vegetables growing in the sandy deserts of Abu Dhabi, watered by desalinated seawater.

This is high-technology, of course. The chemical nutrients needed in my greenhouse take a lot of energy to manufacture. The greenhouse itself is made of aluminum tubing and Mylar plastic reinforced with nylon strands. The piping and trays are plastic. All high-technology items, as are the fungicides I use, and even the water-testing kit that lets me balance off the pH in the nutrients.

Given the energy we can produce food. I think few would deny that. It is true enough that if the average Indian farmer could reach the productivity per acre achieved by the Japanese peasant of the 12th Century, India would have few food problems; but he's not likely to get there without industrial help (at the very least a television and satellite-relayed instructions). Moreover, the Japanese have had to move far ahead of their 12th Century output levels.

But I hope the point is obvious. Given sufficient energy, we have the technology to produce food. We may not have the energy; but famine is not a primary problem. With sufficient levels of industrialization we could even feed cities from greenhouses on the roofs of city buildings: if 1% of New York City were covered with greenhouses, they could feed 10% of the New York population. One percent of the surface area of Los Angeles would feed 1/3 that city's population.

We haven't even looked at the potential of the seas. True, our fish catches have about peaked out and may be declining—but man was never meant to be a hunter-gatherer.

Our exploitation of the seas is on a par with our use of land before we learned about agriculture and domestication of animals.

Sea-farming is a technology in its infancy; but experiments at St. Croix in the Virgin Islands (supported in part by the Vaughn Foundation which supported research for this book) show that fantastic levels of food production per acre can be achieved. The St. Croix research consisted of pumping cold nutrient-rich water from the sea bottom into pens where sunlight could energize plant growth; food harvested was shellfish and the like.

Other sea-farming enterprises in France and Britain show similar results. Selective fertilization of sea areas can increase sea-plant growth by orders of magnitude; one then introduces edible creatures which thrive on the plants. The production levels are again astounding, ten times what a given land area can produce.

Once again these are high-technology enterprises; but there is nothing far-out about them.

Clearly food production per se is not going to be a limit to growth for a very long time. Food production can only be limited by an enforced halt in industrialization and technology; given the energy, technology can easily feed far larger world populations than any projections anticipate for centuries.

* * *

If food production is not a primary problem, but rather an aspect of the energy shortage, pollution is doubly so. We already have the technology to clean up any and all pollutants.

It takes energy, of course. A lot of energy. But given the energy we can, if we must, take pollutants apart down to their constituent atoms.

The California Department of Public Health reports that the cleanest-running stream in the state is the outfalls of the Hyperion Sewage Disposal Plant for Los Angeles County. This is not a sad commentary on California's rivers; there are plenty of unspoiled streams in the High Sierra, but they do contain animal wastes from the deer and bears who inhabit the region.

I have on my desk a bottle of water taken from a sewage-treatment plant flowing into Lake Tahoe. Tahoe's problems are not technological; most of the water in the lake is reclaimed, and is indistinguishable from the cleanest mountain streams. True enough there are certain political jurisdictions which have not adequately cleaned up their act; but one must not blame technology for that. I use the Tahoe sewage water for ice cubes when I have a party that will have "concerned ecologists" as guests. It does no harm to show dramatically just how good our pollution-control technology can be.

Again I see no point in belaboring the obvious. Given the energy resources, pollution is not a real problem. Certainly pollution cannot be the limiting factor in industrial growth. It is another aspect of the energy shortage.

* * *

If famine and pollution do not define the limits to growth, then what of rising population? The view that we shall in the near future become so over-crowded that we will die of the resulting stresses is examined in detail in another chapter; for now let us look at the long-term prospects.

Throughout history there has been only one means of controlling population growth. It is not war; populations often rise in wartime. Famine and pestilence have of course reduced populations drastically, but the recovery from even these horsemen is often rapid, with birth rates skyrocketing so that within a generation population is higher than it was before the catastrophe. No: the only reliable means of limiting population is wealth.

The United States has a fertility rate below the replacement value; were it not for immigration the US population would begin to decline. (There is a "bow wave" effect from the WWII "baby boom" that distorts the picture, but the "boom babies" are rapidly reaching the end of their fertility epoch.)

France, Ireland, Japan, Britain, West Germany, Netherlands; where there is wealth there is decline in the birth rate. David Riesman in his THE LONELY CROWD pointed out many years ago that the Western nations were probably best described as in a condition of "incipient population decline," and it seems his prophecy was true.

Now it's true enough that if we manipulate exponential curves and thus mindlessly project population growth ahead, we will come to a point at which the entire mass of the solar system (indeed, of the universe) has been converted into human flesh. So what? It isn't going to happen, and no one seriously believes that it will. Obviously something will stop population growth long before that.

On a slightly more realistic scale, I have calculated how long it takes, at various growth rates, to reach "standing room only" on the Earth: that point at which there are four of us on each square meter of the Earth's surface (even counting the oceans and polar areas as "standable" surface), Figure 3 shows that those times are surprisingly near -if we have unlimited population growth. Yet the fact remains that as societies get wealthier, their ability to sustain larger populations increases—but their actual population growth declines or even halts.

Of course there are powerful religions whose adherents control large portions of the globe, and which condemn birth control and seemingly all other usable means of population limitation.

Yes. And I'm no theologian. But I cannot believe that any rational interpretation of scripture commands us to breed until we literally have no place to sit. Realistically we are not going to increase our numbers to that point: and, realistically, no religious leader is going to order it done.

"So God created man in his own image, in the image of God created he him; male and female created he them. And God blessed them, and God said unto them, Be fruitful, and multiply, and replenish the earth, and subdue it; and have dominion over the fish of the sea and the fowl of the air, and over every living thing that moveth upon the earth."


Figure 3

"So God created man in his own image, in the image of God created he him; male and female created he them. And God blessed them, and God said unto them, Be fruitful, and multiply, and replenish the earth, and subdue it; and have dominion over the fish of the sea, and over the fowl of the air, and over every living thing that moveth UFOs the earth."

Area, sphere: A= 4 π R2
Radius, Earth: 6.371 x 108 cm.
Area, Earth: 1.700215 x 1018 cm2

Standing room area requirement: 50 cm2 = 2500 sq. cm.
(About 4 people/sq. yard)

Number of people when Standing Room Only:
6.80086 x 1014

Present population: 4 x 109 (4 billion)

Assuming growth rate of 2% a year, it's SRO in 2584
At 1% growth, we get there in 3186 AD
At 4%, we get there in 2283.

QUERY: At what point will the command be fulfilled?


I will leave theology to the theologians; but the command was, "Multiply and replenish the earth, and subdue it;" and surely there must come a time when that has been done? When there can be no doubt that we have been sufficiently fruitful? And surely dominion over the wild things of the earth does not mean that we are to exterminate and replace them? Surely even those of the deepest faith may without blasphemy wonder if we are not rapidly approaching a time when we shall indeed have replenished and subdued the earth?

I cannot believe that we will continue to breed until we have destroyed our world; and frankly, I think of no more certain way to insure that the developing countries continue to increase in population than to condemn them to eternal poverty through Zero-Growth. So let's leave the bogeyman of unlimited population expansion. We have the technology to limit family size when, inevitably, there comes the time when everyone, no matter what his religious conviction, believes that the earth has been replenished and subdued.

Of course we have not reached that time: but the areas of uncontrolled population growth are the poorer areas of the world. All experience teaches that wealth will induce them to smaller family sizes, fewer children, control over population.

Wealth requires energy. The correlation between increase in Gross National Product and increased consumption of energy is about as well established as anything we know. There are those who search for exceptions—but they generally do not find them, and when they do there is always a very long "story" that goes with it. Common sense tells us that if we wish to become wealthy we will need the means of production; and productivity requires machinery, and that requires energy. Indeed, you could make the very definition of wealth the ability to dispose of great quantities of energy.


Figure 4

Exponential Notation: 102 = 100, i.e., 1 followed by 2 zeroes.
103 = 1,000, 106 = 1,000,000, etc.

Mosquito taking flight—1
Man climbing one stair—109
Man doing one day's work—2.5 x 1014
One ton of TNT exploding—4.2 x 1016
US per capita energy use, 1957—2.4 x 1018
Converting one gram hydrogen to helium—6.4 x 1018
Saturn 5 rocket—l022
One megaton, as in bombs—4.2 x 1022
Total annual energy use, Roman Empire—l024
Annual output, total US installed electric power system, 1969—5.4 x 1025
Thera explosion (largest single energy event in human history)—1026
Total electric power produced, world, 1969—1.6 x 1026
Total present annual energy use, world—1029
One Solar Flare—l031
Annual Solar Output—2 x 1039
Quasar, lifetime output—1061


* * *

Thus we see that of our four dooms, three are aspects of the energy crisis: given sufficient energy we will not be overwhelmed by problems of food, pollution, or even overpopulation. But can we find the energy? Will not generating energy itself pollute the earth beyond the survival level?

At this point I must introduce some elementary mathematics. I will try to keep them simple and work it so that you don't have to follow them to understand the conclusions, but if I am to halfway prove what I assert I simply must resort to quantitative thinking. Failure to calculate actual values, blind qualitative assertion without quantity, has been the genesis of a very great deal of misunderstanding and I don't care to add to that storehouse of misinformation. Besides, only through numbers can you get any kind of "feel" for the energy problem.

The basic energy measurement is the erg. It is an incredibly tiny unit: about the amount of energy a mosquito uses when she jumps off the bridge of your nose. In order to deal with meaningful quantities of energy we will have to resort to powers-of-ten notation. Example: 102 = 100; 2 x 102 = 200; 103 = 1000; and 1028 is 1 followed by 28 zeros.

Some basic energy events are shown in Figure 4. Note that a number of natural events are rather large compared to man's best efforts.

It takes a billion ergs to climb a stair, and a day's hard work uses 100,000 times more; yet a ton of TNT exploding contains a hundred days' work and more, while converting one gram of hydrogen to helium will yield more energy than each of us used in a year—and by "used" I don't mean each of us directly, but our share of all the energy used that year in the US: dams, factories, mines, automobiles, etc. I need hardly point out that there are a lot of grams (a gram is one cubic centimeter) of water in the oceans.

Nor need we worry about "lowering the oceans" when we extract hydrogen for fusion power. True, some rather silly stories have asserted that we might, but a moment's calculation will show that if we powered the Earth with each of 20 billion people consuming more energy than we in the US do now, the oceans would not be lowered an inch for some millions of years.

Of course fusion might not work Given the present funding levels we may never achieve it, or the concept itself may be flawed, or the pollution associated with successful fusion may be unacceptable. Are there other methods?

One possible system is pictured in Figure 5. It is an Earth-based solar power system, and the concept is simple enough. All over the Earth the sun shines onto the seas, warming them. In many places—particularly in the Tropics—the warm water lies above very cold depths. The temperature difference is in the order of 50° F, which corresponds to the rather respectable water-pressure of 90 feet. Most hydro-electric systems do not have a 90 foot pressure head.

The system works simply enough. A working fluid-such as ammonia—which boils at a low temperature is heated and boiled by the warm water on the surface. The vapor goes through a turbine; on the low side the working fluid is cooled by water drawn up from the bottom. The system is a conventional one; there are engineering problems with corrosion and the like, but no breakthroughs are needed, only some developmental work

The pollutants associated with the Ocean Thermal System (OTS) are interesting: the most significant is fish. The deep oceans are deserts, because all the nutrients fall to the bottom where there is no sunlight; while at the top there's plenty of sun but no phosphorus and other vital elements. Thus most ocean life grows in shallow water or in areas of upwelling, where the cold nutrient-rich bottom water comes to the top.

More than half the fish caught in the world are caught in regions of natural upwelling, such as off the coasts of Ecuador and Peru.

The OTS system produces artificial upwelling; the result will be increased plankton blooms, more plant growth, and correspondingly large increases in fish available for man's dinner table. The other major pollutant is fresh water, which is unlikely to harm anything and may be useful.

Certainly there are some engineering problems; but not so much as you might expect. The volumes of water pumped are comparable to those falling through the turbines at a large dam, or passing through the cooling system of a comparable coal-fired power plant. The energy itself can be sent ashore by pipeline after electrolysis of water into hydrogen and oxygen; or a high-voltage DC power line can be employed; or even used to manufacture liquid hydrogen for transport in ships as we now transport liquid natural gas.

As to the quantity of power available: if you imagine the continental United States being raised 90 feet, forming a sheer cliff from Maine to Washington to California to Florida and back to Maine; then pour Niagara Falls over every foot of that, all around the perimeter forever; you have a mental picture of the energy available in one Tropic, one band between the equator and the Tropic of, say, Cancer. It is more than enough power to run the world for thousands of years.

Finally the feasibility of OTS: in 1928 Georges Claude, inventor of the neon light, built a 20 kW OTS system for use in the Caribbean. It worked for two years. One suspects that what could be done with 1928 technology can be done in 1988.

OTS is not the only non-polluting system which could power the world forever. Solar Power Satellites would do the task nicely. SPS will be discussed in later chapters; but few doubt that they could provide more than enough energy to industrialize the world, and we understand how to build them far better at this moment than we understood rockets on the day President Kennedy committed us to going to the Moon in a decade.


Figure 5



That is a point worth repeating: we can power the Earth from space. We do not "know how to do it" in the sense that all problems are solved; but we do know what we must study in order to build large space systems. When John F. Kennedy announced that the United States would land a man on the Moon before 1970, the reaction of many aerospace engineers was dismay: not that anyone doubted we could get to the Moon, but those closest to the problem were acutely aware of just how many details were involved, and how little we had done toward building actual Moon ships. We had at that time yet to rendezvous or dock in space; there were no data on the long-term effects of space on humans; we had not successfully tested hydrogen-oxygen rockets; there were guidance problems; etc, etc. Thus the dismay: there was just so much to do, and ten years seemed inadequate time in which to do it.

Solar Power Satellites, on the other hand, have been studied in some detail; and we have the experience of Apollo and Skylab. We know that large structures can be built in space; they require only rendezvous and docking capabilities, and we've tested all that. We know we can beam the power down from space; the system has been tested at JPL's Goldstone, and the DC to DC efficiency was 85%. There are other problem areas, but in each case we know far more now than we knew of Mooncraft in 1961.

Ocean Thermal and Solar Power Satellites: either would power the world. I could show other systems, some not so exotic. My engineering friends tell me that OTS and SPS may even be the hard way, and there are much more conventional ways to supply Earth with energy.

No matter. My point is that we can find the energy. The method used is unimportant to the argument I make here: that we can survive, and survive with style.

Given energy we will not starve; we will lick the pollution problem; and we will generate the wealth which historically has brought about population limits. At least three of the dooms facing us can be avoided.


That brings us to the fourth doom: depletion of non-renewable resources. Can we manufacture the materials needed for survival with style? And can we do it without polluting the earth?

Surely we can. We can go to space to get the materials—and in doing it w£ can avoid pollution entirely. (There are, of course, those who worry about "polluting outer space", an example of non-quantitative thinking. Were we to devote the Gross World Product exclusively to the task and vaporize the Earth in the attempt we could not manage to pollute more than a fraction of a percent of the space in the solar system, and our effect would be temporary. One suspects that those who worry about "polluting outer space" are either incredibly arrogant, or actually are motivated by a desire for Zero Growth for its own sake.)

Metal production makes an excellent example. Mining and refining metals are some of the most polluting actions we manage, and metals are the most irreplaceable non-renewable resources we have. Give us enough iron and steel, copper, aluminum, zinc, and lead, and surely we'll have our problems licked. Give us enough metals and energy and we'll have wealth.

After all, it's mine tailings that produce some of the really horrible pollution; copper refineries that poison so many streams; and those belching steel mills that made Pittsburgh a legend (although Pittsburgh is also an excellent example of how pollution may be cleaned up once it is determined that cleanup has to be accomplished; a whole generation has never seen the smoke and fire of old Pittsburgh). Furthermore, processing metals uses up vast amounts of energy.

Give us metals free and clear, and the rest is easy. Give us enough metals and we'll industrialize the world. Besides, if we can do that in space, we can probably do anything else that has to be done. Consequently, I'll use metal production as my illustrative example.


Figure 6

In 1967, the United States produced 315 million tons of iron, steel, rolled iron, aluminum, copper, zinc, and lead.

Total metal produced, USA, 1967: 2.866 x 1014 grams.

Assume 3% ore, of density 3.5 gm/cm3, and the USA produced the equivalent of a sphere 1.7 kilometers in diameter.

At 230,000,000 population, we produced 1.25 x 106 grams per capita. To supply the world with that much requires 5 x 1015 grams or FIVE BILLION TONS.

Assuming 3% ore at 3.5 gm/cm3, five billion tons of ore is a sphere 2.25 kilometers in radius or 4% kilometers in diameter.

There are 40,000 or more asteroids larger than 5 km in diameter.

We may not run out of metals after all. . . .


In 1967, a year for which I happen to have figures, the United States produced 315 million tons of iron, steel, rolled iron, aluminum, copper, zinc, and lead. (I added up all the numbers in the almanac to get that figure.) It comes to 2.866 x 1014 grams of metal. Assume we must work with 3%-rich ore, and we have 9.6 x 1015 grams of ore, or 10.5 billion tons.

It sure sounds like a lot. To get some feel for the magnitude, let's put it all together into one big pile. Assuming our ore is of normal density we end up with a block less than 1.5 kilometers on a side: something more than a cubic kilometer, something less than a cubic mile. Or, if you like a spherical rock, it's less than two kilometers in diameter.

There are 40,000 or more asteroids larger than 5 km in diameter.

We may not run out of metals after all. . . .

But—the title of this chapter is "Survival with Style." Style to me does not consist of the West as an island of poverty in the midst of a vast sea of misery. Style, to me, means that everyone on earth has a chance at wealth—at least at a decent life.

Can we not agree that if everyone on Earth had the per capita metal production of the US, we would probably have achieved world riches? Especially since we export much of ours to begin with; surely it's enough?

Thus we take our 315 million tons and multiply by the world population, then divide by the US population; assume 3% ore, and we find how much we'll need. The result works out to a sphere less than four miles in diameter—and there are well over 100,000 asteroids larger than that.

Three percent ore is no bad guess as to what they're made of, either. Actually, given the data from the Moon racks, 3% is an underestimate of the usable metal content of the average asteroid. We've had heavy nickel-iron meteorites fall that were nearly 80% useful metal. Then too, some of the asteroids were once differentiated—that is, they were large enough that metallic cores formed. Then over the last four billion years the planetoids got bashed around until a lot of the useless exterior rock was knocked away, leaving the metal-rich cores exposed where we can get at them.


Figure 7

Take one each, FIVE BILLION TON asteroid. Move from the Belt to Earth orbit.

Requires a velocity change of 7 kilometers a second.

KE = V2 M V2

or, we need 1.225 x 1027 ergs.

For reference, the world annual energy use is 1029 so we're using about 1% of it . . . .

That's also 30,000 megatons.
And 30,000 one megaton bombs might just do it.

For a slightly more efficient system, we can get the energy by converting 2,000 tons of hydrogen to helium . . .
Once we have the rock in Earth orbit, it's simple to get the metal out. We merely boil the entire rock. Of course that takes rather large mirrors, but what the heck. . . .

Over 100,000 asteroids, each capable of supplying the world with more metal per person than the US consumes in a year. Surely we won't run out of metals—but can we use them?

Sure we can. First, for the moment let's forget that the asteroids are way out there in the Belt, and concentrate on how to get the metals out assuming we have the rocks in Earth orbit. That turns out to be easy. We can use sophisticated methods, but there's also brute force: boil the rock

It takes about 2000 calories per gram to boil iron. That's about the worst case for us, so we'll imagine the entire asteroid is made of iron. It takes, then, about 8.8 x 10 ergs, or twenty thousand megatons, to boil it all away.

The sun delivers at Earth orbit about 1.37 million ergs a second per square centimeter, and out in space we can catch that with mirrors. To boil our rock we could put up a mirror 80 kilometers in radius. That's too big; but we don't have to boil it all at once. A much smaller mirror to focus the sun onto a small part of the rock would be preferable.

A space mirror need be nothing more than the thinnest aluminized Mylar, spun up to keep its shape. There's no wind or gravity in space. A mirror one or two kilometers across is a relatively simple structure—and more than adequate for our job. If need be we can actually distill off the metals we want.

Note, by the way, that there's been absolutely no pollution of Earth so far—even though we've got metals for the entire world. All the waste is out in space where it can't hurt us. But we do have a problem. My metals are not in Earth orbit; they're out there in the asteroid Belt, and they've got to be moved here—and that's going to take energy.

Let's see just how much it does take. To get from Ceres to Earth you need a velocity change of about 7 kilometers a second. By definition energy is mass given a velocity change, so we can quickly figure out how much; if we move the entire rock it comes to about 1% of the world's energy budget. That's not so much; we expend far more than that on metal production already.

To be more precise, it's about 60,000 megatons; and if need be, we can use hydrogen bombs. Put an H-bomb at the center of mass of an asteroid and light it off; I guarantee you that sucker will move. It's expensive, but not grossly so, assuming I have laser triggers for my H-bombs; only a few tons of hydrogen.

I could also do it with fusion: at 10% efficiency I get 6.4 x 1017 ergs per gram of hydrogen, and I need about 1027 ergs total to move the rock; for an engine I use an ion engine, breaking up parts of the asteroid for reaction mass. What arrives is something less than I started with, but who cares? What I'll throw away as reaction mass is the slag from my refinery.

(For those who haven't the foggiest notion of what I'm talking about: a rocket works by throwing something overboard. The reaction mass is what's thrown. Although the big space program rockets use gaseous exhaust as reaction mass, there's no reason you couldn't use dust, ground up rock, or slag from a metals refinery. It's all a question of whether you can throw it sternwards fast.)

But that leads to another possibility: why not set up the refinery out at the Belt? Put up vast mirror systems and do the refining on the way in; use the slag as reaction mass to move the whole works, rock, refinery, and all. I can power that with solar mirrors. Or I can do all at once: use bombs for initial impetus, set up mirrors when I'm closer in, and while I'm at it run a hydrogen fusion plant aboard the moving strip-mine/refinery/spaceship I have created.

At worst I have to carry about one Saturn rocket's worth of hydrogen, plus several shiploads of crew and other gear; and for that I get an entire year's worth of metals for the world. The value of my rock is somewhere near a trillion dollars once it's in Earth orbit; more than enough to pay for the space program and pay off the National Debt at the same time.

So. For the price of some hydrogen and a rather complex ship system I've brought home enough metal to give everyone on Earth access to riches. If we do nothing else in space; if we come up with no new and startling processes such as I've described in other columns (and in other chapters of this book)—we'll have licked pollution and dwindling resources, thereby letting the developing countries industrialize, and thereby whipping the food production crisis for a while.

We have avoided the fourth doom. And that's all of them.

* * *

Sure: there's a limit to growth. But with all of space to play with I'll be happy to leave the problem for my descendants of 10,000 years hence to worry about.

I can hear the critics spluttering now. "But-but-but—what does this madman think he's doing? Flinging numbers like that around! Bringing in asteroids. It's absurd!"

Really? Remember, we haul quantities like that around here on Earth even now; in trains, and on boats, and it takes far more energy to process them here than it would in space. To get that energy here we must burn fossil fuels—which are really far too valuable as chemicals to set a match to—and put up with the resulting pollution. And, after all, I've assumed that we're going to supply the whole world with metals at the rate that we produce them from all sources—including recycling—here at ground level US of A. What's so absurd about it?

No, we won't be operating in space on this scale for a few years; but then we weren't producing all those tons of steel in 1930 either. Even the worst crunch models will not kill us off before 2020—a year in which we might very well be able to move asteroids around, boil them up for processing, and bring the resulting metals down for use here on Earth. It's a year in which we certainly will have Solar Power Satellites, always assuming that we want SPS. And there's approximately as much time between now and 1930 as now and 2020.

Yes. We live on a finite Earth. But there's a whole solar system out there. If we like we do not live on "Only One Earth." If we like, we live in a system of nine planets, 36 moons, a million asteroids, a billion comets, and a very large thermonuclear reactor/radiation source. It's all waiting for us out there. We've only to lift our heads out of the muck to find not only survival, but survival with style.

Back | Next